The Maginot Line: Attacking the Boundary of DNS Caching Protection

Balaji Balachandran

A little bit about conditional DNS (CDNS)

- Acts as a recursive resolver and forwarder
- All queries fit into one of two categories
 - Recursive DNS zones, Z_R
 - Forwarding DNS zones, Z_F
- Shared global cache between resolver and forwarder

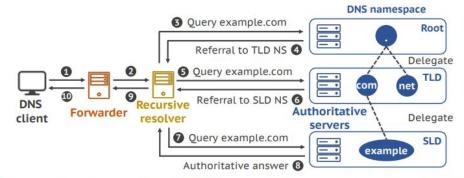
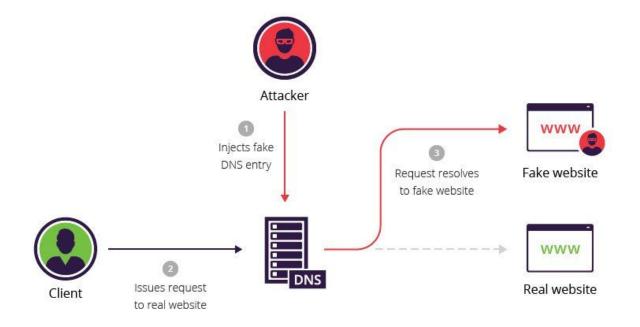
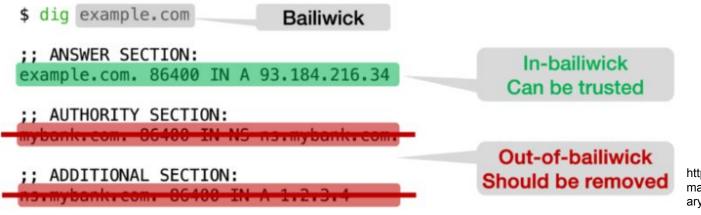
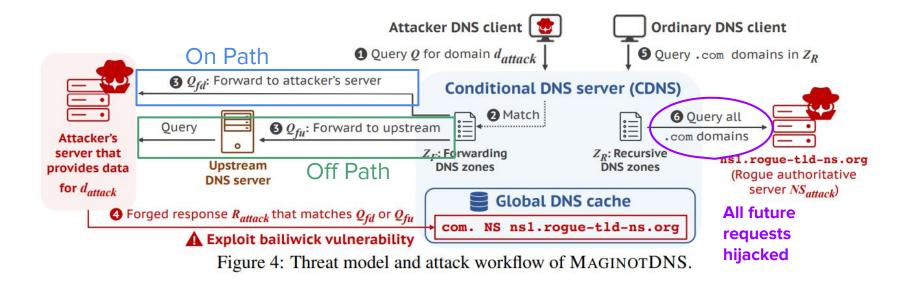



Figure 1: A standard DNS resolution process for domain example.com under the DNS namespace.

- MaginotDNS targets queries for domains in the forwarding DNS Zone
 - *i.e.* $d_{attack} \in Z_F$


Cache Poisoning

https://www.imperva.com/learn/application-security/dns-spoofing/


Bailiwick Rules

- Don't accept responses from an authoritative DNS that fall outside the scope of authority
- Prevent malicious authoritative servers from providing DNS mappings

https://blog.apnic.net/2023/09/26/ maginotdns-attacking-the-bound ary-of-dns-caching-protection/

Attack Taxonomy

- Bailiwick seems like a reasonable defense against cache poisoning
- Bailiwick checks are adequately enforced for recursive resolvers...
- ...not so much for forwarders
- When we leverage the shared cache of a forwarder and resolver, we can manipulate the forwarder and enable cache poisoning

Maginot Line: "A defensive barrier that inspires a false sense of security"^[1]

- "Cross the boundary"

DNS software		Server role				Cache protection			Cache poisoning defense		
Brand	Version	Auth ¹	Recur ²	Fwder ³	CDNS	Fall- back	Bailiwick checking	Trust level	Shared cache	DNSSEC	0x20
BIND [12]	9.18.0	1	1	1	1	1	1	1		1	X
Knot Resolver [77]	5.5.2	X	1	1	1	×	1	1	1	1	1
Unbound [91]	1.16.2	1	1	1	1	1	1	1	1	1	1
PowerDNS Recursor [75]	4.7.1	X	1	1	1	×	1	1	1	1	1
Microsoft DNS [87]	2022 ⁴	1	1	1	1	1	1	1	1	1	×
Technitium [89]	7.0	1	1	1	1	×	1	X	1	×	1
Simple DNS Plus [73]	9.1.108	1	1	1	1	×	1	1	1	1	1
MaraDNS [67]	3.5.0022	1	1	1	1	×	1	×	1	×	1
CoreDNS [22]	1.9.3	1	15	1	15	15	×	_6	X	1	×
Dnsmasq [33]	2.86	×	X	1	×	-	×	×	-	1	×
DNRD [26]	2.20.3	×	X	1	×	-	×	X	-	×	×
YADIFA [94]	2.5.4	1	X	×	×	_	2	-	-	1	1
NSD [72]	4.6.0	1	X	X	×	-	-	-	-	1	1

Table 1: DNS operational modes and functionalities available in mainstream implementations.

¹ Authoritative server. ² Recursive resolver. ³ Forwarder. ⁴ OS build 20348.740. ⁵ Available only when compiled with extra Unbound extensions. ⁶ "-" means not applicable.

Pulling it off

- 1) Probe or use software fingerprinting to find CDNSes
- Craft DNS response with enough trust level to overwrite the cache
- 3) Manipulate future queries

Finding vulnerable DNS ports

- Attack in 'rounds'
- Brute force attacking to determine vulnerable dns ports
 - Relies on the birthday paradox
- On average <15 minutes to execute the attack
- Traffic rate is significant. Should this be a red flag to DNSes?

Software	Time of each round	Avg time taken	Max traffic rate	Success rate
MS DNS	<u>5s</u>	802s	216Mbps	20/20
BIND	1.2s	790s	54Mbps	20/20

Table 3: Microsoft DNS and BIND off-path attack results.

 $1 - \left[(28, 232 - 50)/28, 232 \right]^{3600} = 99.8\%$ (2)

Identifying CDNSes

- Probe a subset of DNS zones to determine when CDNSs
 - Use Alexa's Top 10k sites
- Of the **370,512** DNS that support cache probing, **154,955** could be identified as CDNSes (41.8% of probed)
- 54,949 vulnerable CDNSes (14.8% of probed)
 - All vulnerable to on path attacks
 - 88.3% vulnerable to off path attacks

DNG G		% of			
DNS Server Type	# IP	Probed	CDNS	Vuln.	
DNS servers on Feb. 14, 2022	1,499,110	- 1	- 1	-	
DNS servers alive on Mar. 14, 2022	1,215,918	-	-	_	
- Not following non-recursive	839,017	-	-	1770	
 Using multiple caches 	401,186	-	-	-	
- Supports cache-probing	370,512	100%	-	_	
 Version identifiable 	237,835	64.2%	-	-	
 – DNSSEC validation 	86,955	23.5%	-	-	
- 0x20 encoding	1,619	0.4%	-	_	
CDNSes identified by probing	154,955	41.8%	100%	-	
- Version identifiable (in CDNS)	117,306	31.7%	75.7%	-	
- by version.bind	59,419	16.0%	38.3%	-	
- by fpdns	57,887	15.6%	37.4%		
- OS identified for BIND (in CDNS)	19,995	5.4%	12.9%		
- DNSSEC validation (in CDNS)	34,424	9.3%	22.2%	-	
- 0x20 encoding (in CDNS)	1,119	0.3%	0.7%	-	
Vulnerable CDNSes	54,949	14.8%	35.5%	100%	
- On-path attack possible*	54,949	14.8%	35.5%	100%	
- BIND	24,287	6.6%	15.7%	44.2%	
- Microsoft DNS	30,662	8.3%	19.8%	55.8%	
– Off-path attack possible [*]	48,539	13.1%	31.3%	88.3%	
- BIND (OS exploitable)	17,877	4.8%	11.5%	32.5%	
- Microsoft DNS	30,662	8.3%	19.8%	55.8%	
- Recursive-default	10,445	5.0%	11.9%	33.4%	
- Forwarding-default	36,581	9.9%	23.6%	66.6%	

* On-/Off-path attack possible: CDNSes equipped with non-empty Z_F and vulnerable software versions/OSes. Because we lack vantage between CDNSes and upstream servers, we can only confirm they are vulnerable to on-/off-path attacks, but cannot further identify which domains in Z_F can be actually exploited by each type of attack.

Table 4: Open DNS servers and CDNS statistics.

Flags: QR AA RD;	Flags: QR AA RD;
Question section:	Question section:
attacker.com. A	attacker.com. NS
Answer section:	Answer section:
attacker.com. A a.t.k.r	attacker.com. CNAME com.
Authority section:	Authority section:
com. NS nsl.rogue-tld-ns.org.	(Empty)
Additional section:	Additional section:
nsl.rogue-tld-ns.org. A a.t.k.r	(Empty)
(a)	(b)

Microsoft DNS / BIND Knot pt. 1

Flags: QR AA RD;	Flags: QR AA RD;	Flags: QR AA RD;	
Question section:	Question section:	Question section:	
com. NS	attacker.com. A	attacker.com. A	
Answer section:	Answer section:	Answer section:	
com. NS nsl.rogue-tld-ns.org.	(Empty)	attacker.com. A a.t.k.r	
Authority section:	Authority section:	Authority section:	
(Empty)	com. NS nsl.rogue-tld-ns.org.	(Empty)	
Additional section:	Additional section:	Additional section:	
nsl.rogue-tld-ns.org. A a.t.k.r	nsl.rogue-tld-ns.org. A a.t.k.r	(Empty)	
(c)	(d)	(e)	

Knot pt. 2

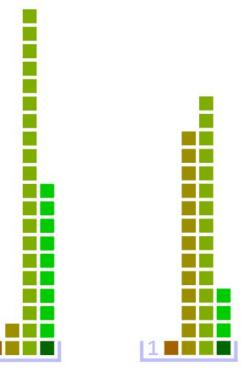
Technetium Prevents Fallback

Attack Impact

- Attackers can take over entire DNS zones
 - Including top level domains (.net, .com, .edu, etc.)
- Poisoned cache relinquishes control to attackers
- Can insert malware, phishing, etc.

Mitigation

- 0x20 encoding
 - Randomly change the case of each character in a query
 - Difference between uppercase and lowercase is the 6th bit in ASCII (0x20)
 - defends against MaginotDNS Off-path
- DNSSEC validation
 - Validates the sender
 - defends against On-path and Off-path MaginotDNS attacks
 - When probed, simply returns a SERVFAIL


Discussion

- Is this a large threat? DNSSEC is an effective countermeasure already, does this take away from the novelty of the attack?
- All DNS vendors have acknowledged and have now remediated all issues
- ~70% of the world's DNS servers are running BIND. Is that an issue?
- Why was this discovered just recently? Microsoft DNS and BIND are mature products.
- Why isn't DNSSEC used extensively in practice?

- Why is it so easy to spoof trust with the AA flag?
- RFCs specify bailiwick checks at a high-level.
 Why the implementation to standard gap?
- DNSSEC requires overhead to verify responses.
 Is the attack serious enough to be worth the tradeoff?
- This research was supported in part by Microsoft

Flags: QR AA RD;	
Question section attacker.com. A	1:
Answer section: attacker.com. A	a.t.k.r
Authority section	
Additional sections1.rogue-tld-ns	l on: s.org. A a.t.k.r
(a	U)

General Consensus

"Thorough in their analysis, attack is interesting"

"Not so novel, mitigation techniques exist already"